想着观摩一下,再决定试图推翻后, 舒尔茨自然用心多了。
而洛叶此时也大致看完了这五百多页的论文。
如果让洛叶对这篇论文做个总结, 用通俗的话解释,那就是望月新一把ABC猜想转化成了一个椭圆曲线的问题,包含了X,Y两个变量的特殊类型的三次方程。然后ABC猜想就被归纳为证明与椭圆曲线相关的两个量之间的一个确定的不等式。
而望月新一再次把这个不等式转化成了另一个形式——比较两个集合的体积。
而舒尔茨总结的内容也和洛叶差不多,“重点是关于3.12,只要证明了这个推论是真的, 那望月新一的证明就可能是对的。”
那相应的,如果要推翻这个证明过程,只要证明它是错误的就够了。
洛叶,“这个证明涉及处于实数的两个不同拷贝内观察两个集合的体积,然后实数的这两个不同拷贝又被表示为实数的六个不同拷贝组成圆的一部分,同时还包括了解释圆上每一个实数拷贝如何与近邻联系的映射。”
舒尔茨,“为了追踪几何的体积如何彼此联系,必须理解不同拷贝□□积测量如何联系。如果有两个变量的不等式,但是测量的尺子因为无法控制的因素而有些收缩,那就是会失去对不等式实际意义的控制。”
洛叶,“而在望月新一的映射中,测量标尺在局域上相互兼容,但如果绕圆一周,正式最终测量标尺看起来将会不同于另一种绕行方式。”
两人你一言我一语,把本来有些模糊的灵感全都变的清晰了起来,相互的对照让他们找到了望月新一的论文中最重要的漏洞!
无论是舒尔茨还是洛叶都不由的有些激动,两人再次快速的交流了起来,这次不用打字了,那也太慢了,两人直接语音开始交流。
不得不说,两人真的都是万中无一的天才,现在大部分人都还在挣扎的看着望月新一的论文,在看懂和看不懂中来回迷茫,可两人硬生生的把论文啃了下来,并且找到了关键点——他们不用去管其他东西了,只要认真研究3.12定理就够了。
牛津大学会议如期召开,洛叶和舒尔茨也算是重新在现实中再次见面了。
德利涅教授并没有出席这次会议,洛叶先和布lun德聊了聊她和斯坦福大学合作的课题,就见舒尔茨陪着一个身材微胖的中年人过来,对洛叶介绍道,“这是克雷研究所所长。”
又介绍洛叶道,“这是普林斯顿大学的洛。”
他毫不避讳的道,“虽然她现在还是硕士研究生,但她在数学上的天分实在惊人,应该很快会毕业。”
这句话很多人都说过,可是舒尔茨是谁啊,他本身就被誉为超级天才,天赋普通一点的被他这么一夸差不多就要汗颜了,而且他也不会这么夸人,而现在他的语气可是毫无虚假,给人一种发自肺腑的感觉,别说洛叶此刻已经是声名鹊起的天才了,就是她此刻默默无闻,被他这么一夸,估计也被要另眼相看了。
而舒尔茨说的绝对是真话,在和洛叶交流了一番关于望月新一的论文后,他对洛叶的感觉更为亲近,能跟上他思维的同龄人当中,也就只有洛叶了。
而所长听了之后不由的又仔细看了眼洛叶,哈哈大笑道,“我当然知道她,我还看过你的论文。”
前者是对舒尔茨说的,后者是对洛叶说的,看着洛叶的眼神止不住的欣赏。
克雷研究所从来都喜欢网罗青年数学家,而洛叶绝对就在此列,无论是舒尔茨还是布lun德,都是它的成员,可以说克雷研究所本来就是一个庞然大物。
只是洛叶的年纪实在太小了,现在20岁,硕士研究生都还没有毕业,他们招收的至少是个博士。
不过他还是给洛叶留了张名片,“如果想加入克雷研究所,可以随时联系我。”
他这时还心道,说不定今年年底她就能拿到硕士学位了,到时候正好可以邀请她加入。
可等到会议开始后,他就不由的有些后悔了,自己刚刚有些不太热情啊!如果洛叶想加入,就是她现在在读硕士,他们也不是不可能破例啊!
而舒尔茨之前怎么没说这个啊!
——因为在刚刚宣布了会议开始后,舒尔茨就率先站了起来。
“关于ABC猜想证明这一论文,我和洛,有以下问题——”
首先就表明了,他说的这些东西是他和洛叶共同研究出来的。他上去说而非是洛叶,主要是洛叶不喜欢口述。
而其他人全都呆掉了。
——其实这次大会的目标是主要是讨论如何理解望月新一的理论,就是说如何能看懂。
看懂了之后才能去判定是对是错,而看懂对于这篇论文来说是很难的一步,所以他们来集思广益。
可是谁也没有想到,舒尔茨和洛叶这两个变态级的天才居然真的在短短时间内看懂了,并且还找出了问题来,试图来推翻望月新一的这篇理论。
这就像是大家都在准备走,对方刷的一下跑到了终